【学习笔记】傅里叶变换: 方形函数,三角函数
F(ω)=∫−t0t0A⋅e−jωtdtF\left( \omega \right) =\int ^{t_{0}}_{-t_{0}}A\cdot e^{-j\omega t_{dt}}F(ω)=∫−t0t0A⋅e−jωtdt=Ajω(ejωt0−e−jωt0)=\dfrac {A}{j\omega }\left( e^{j\omega t_{0}}-e^{-j\omega t_{0}}..
方形函数:
F ( ω ) = ∫ − t 0 t 0 A ⋅ e − j ω t d t F\left( \omega \right) =\int ^{t_{0}}_{-t_{0}}A\cdot e^{-j\omega t}{dt} F(ω)=∫−t0t0A⋅e−jωtdt
= A j ω ( e j ω t 0 − e − j ω t 0 ) =\dfrac {A}{j\omega }\left( e^{j\omega t_{0}}-e^{-j\omega t_{0}}\right) =jωA(ejωt0−e−jωt0)
= A j ω ⋅ 2 j sin ω t 0 =\dfrac {A}{j\omega }\cdot 2j\sin \omega t_{0} =jωA⋅2jsinωt0
= A ⋅ 2 t 0 sin ω t 0 ω t 0 =A\cdot \dfrac {2t_{0}\sin \omega t_{0}}{\omega t_{0}} =A⋅ωt02t0sinωt0
= 2 A t 0 ⋅ S a ( ω t 0 ) =2At_{0}\cdot S_{a}\left( \omega t_{0}\right) =2At0⋅Sa(ωt0)
即: A [ u ( t + t 0 ) − u ( t − t 0 ) ] ⇔ 2 A t 0 S a ( ω t 0 ) \begin{aligned}A\left[ u\left( t+t_{0}\right) -u\left( t-t_{0}\right) \right] \Leftrightarrow 2At_{0}Sa\left( \omega t_{0}\right) \end{aligned} A[u(t+t0)−u(t−t0)]⇔2At0Sa(ωt0)
**
三角函数:
**
先特殊化:令 t 0 t_{0} t0=1,A=1;
则: F ( ω ) = ∫ − 1 0 ( 1 + t ) e − j ω t d t + ∫ 0 1 ( 1 − t ) e − j ω t d t F\left( \omega \right) =\int ^{0}_{-1}\left( 1+t\right) e^{-j\omega t}dt+\int ^{1}_{0}\left( 1-t\right) e^{-j\omega t}dt F(ω)=∫−10(1+t)e−jωtdt+∫01(1−t)e−jωtdt
分部积分:
= [ ( 1 + t ) ⋅ e − j ω t − j ω ‾ ] − 1 0 + ∫ − 1 0 e − j ω t j ω d t + [ ( 1 − t ) ⋅ e − j ω t − j ω ‾ ] 0 1 + ∫ 0 1 e − j ω t j ω d ( 1 − t ) =\begin{bmatrix} \left( 1+t\right) \cdot e^{-j\omega t} \\ \overline {-j\omega } \end{bmatrix}^{0}_{-1}+\int ^{0}_{-1}\dfrac {e^{-j\omega t}}{j\omega }dt+\begin{bmatrix} \left( 1-t\right) \cdot e^{-j\omega t} \\ \overline {-j\omega } \end{bmatrix}^{1}_{0}+\int ^{1}_{0}\dfrac {e^{-j\omega t}}{j\omega }d\left( 1-t\right) =[(1+t)⋅e−jωt−jω]−10+∫−10jωe−jωtdt+[(1−t)⋅e−jωt−jω]01+∫01jωe−jωtd(1−t)
= 1 − j ω + 1 − e j ω ω 2 + 1 j ω + 1 − e − j ω ω 2 =\dfrac {1}{-j\omega }+\dfrac {1-e^{j\omega }}{\omega ^{2}}+\dfrac {1}{j\omega }+\dfrac {1-e^{-j\omega }}{\omega ^{2}} =−jω1+ω21−ejω+jω1+ω21−e−jω
= 2 − e j ω − e − j ω ω 2 =\dfrac {2-e^{j\omega }-e^{-j\omega }}{\omega ^{2}} =ω22−ejω−e−jω
又因为: cos w = 1 − 2 s i n 2 ω 2 \cos w=1-2sin^{2}\dfrac {\omega }{2} cosw=1−2sin22ω
所以化简得: F ( ω ) = S a 2 ω 2 F\left( \omega \right) =Sa^{2}\dfrac {\omega }{2} F(ω)=Sa22ω
同理,一般化可得: F ( ω ) = A t 0 S a 2 ω t 0 2 F\left( \omega \right) =At_{0}Sa^{2}\dfrac {\omega t_{0}}{2} F(ω)=At0Sa22ωt0
更多推荐
所有评论(0)